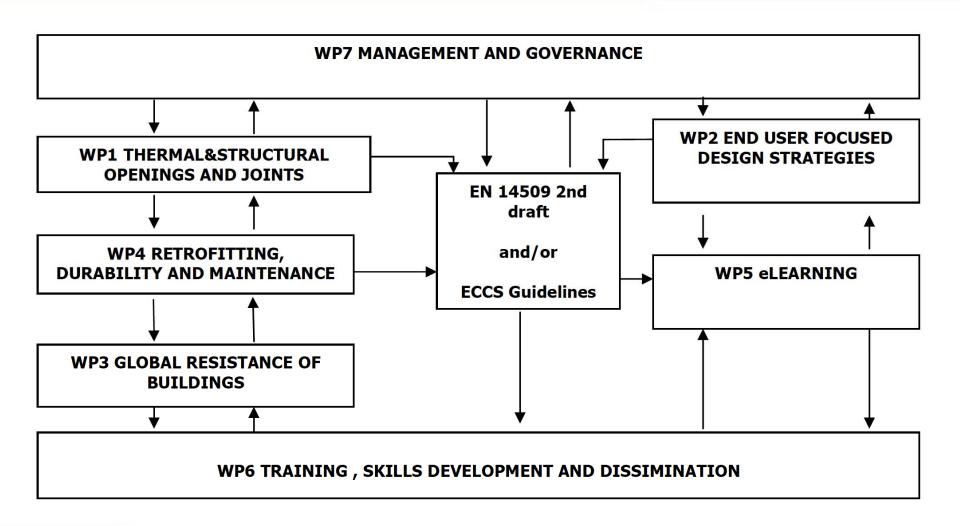


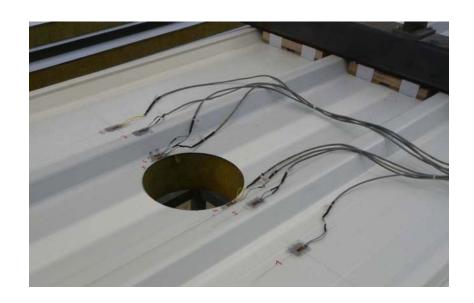
The EASIE Project an overview

EPAQ Congress 2011 in Rome

22.09.2011


Bernd Naujoks

Prof. Dr.-Ing. Bernd Naujoks
Institute for Sandwich Technology, iS-mainz



Introduction

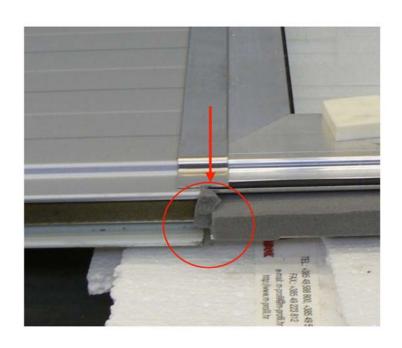
iS-mainz

Openings without frames?


(Fech-Jet-System)

Load-bearing behaviour of Openings with windows acting as a frame?

Openings with frames:



Hidden beam

iS-mainz

5

Airtightness of windows acting as a frame without substructure?

Transfer of shear loads through the longitudinal joints?

Two methods – same purpose:

CE Label and Span Tables

AnyCo Ltd, PO Box 21, B-1050 XYZ Co

01234-CPD-00234

EN 14509

Metal faced insulating panel for use in buildings.

Reference: KS1000. Insulation: PUR Density: 35 kg/m³ Thickness: 80mm. Facings: Steel 0,5 mm external: 0,4 mm internal (EN 10326). Coating: PVC. Mass: 12

Span table

Arcelor 1001 TS-roof-100 D = 140,69 mm $t_{\text{nom},1} = 0,474 \text{ mm}$ $t_{\text{nom},2} = 0,47 \text{ mm}$

The stated values are only valid together with the input datas and safety factors according to clause A and B

for: One span panel

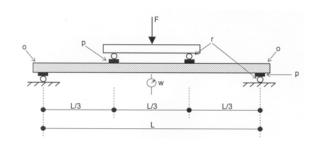
Colour group		Characteristical snow load [kN/m²]													
	0,00	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75		5,00	
1	7,01	7,01	6,00	5,35	4,88	4,52	4,20	3,91	3,67	3,46	3,28	3,08		1,67	
II	7,01	7,01	6,00	5,35	4,88	4,52	4,20	3,91	3,67	3,46	3,28	3,08		1,67	
III	7,01	7,01	6,00	5,35	4,88	4,52	4,20	3,91	3,67	3,46	3,28	3,08		1,67	

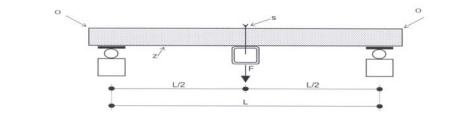
Colo	ur group	Characteristical wind suction load [kN/m²]													
		0,00	-0,25	-0,50	-0,75	-1,00	-1,25	-1,50	-1,75	-2,00	-2,25	-2,50	-2,75		-5,00
	T	7,01	7,01	7,01	6,44	5,60	5,01	4,56	4,21	3,92	3,68	3,47	3,29		2,30
	II	7,01	7,01	7,01	6,12	5,41	4,91	4,53	4,21	3,92	3,68	3,47	3,29		2,30
	III	7,01	7,01	5,99	5,39	4,97	4,61	4,27	4,00	3,77	3,58	3,41	3,26		2,30

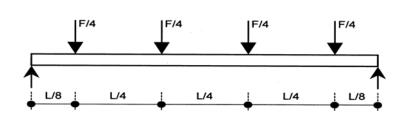
iS-mainz

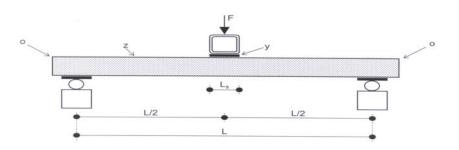
Cost-Benefit-Ratio of:

Thermal Tests?

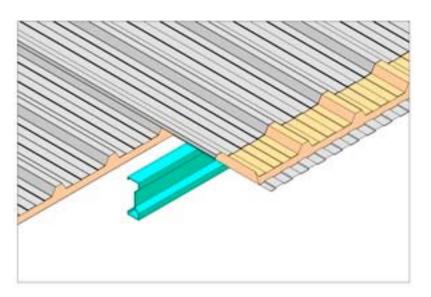

Cost-Benefit-Ratio of:

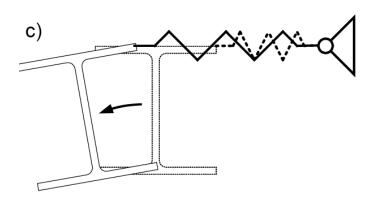



Two Span Tests?



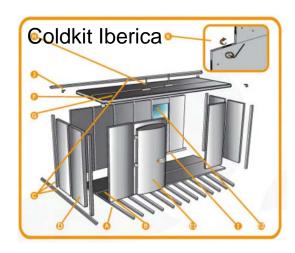
Total number of necessary tests:




$$\Sigma n = f(D_i, t_{1i}, t_{2i}, G_{ci}, \Delta T_i) = ???$$

Global resistance

Stabilization of purlins? Global stabilization of complete buildings?


Sandwich Elements acting as a diaphragm: Stiffness of fastenings?

Global resistance

Sandwich Buildings without substructure

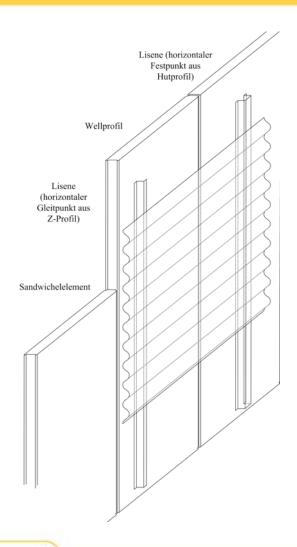
Global buckling of Sandwichelements under axial forces:
Influence of creeping?
Wrinkling/Debonding at Load introduction?

Durability/Retrofitting

Relation between artificial and real ageing?

Influence of ageing of core material on wrinkling strength and shear strength?

Durability/Retrofitting


Influence of defects?

Reduction of wrinkling strength?

Retrofitting?

Durability/Retrofitting

New to Old Concept:

Design of Elements with additional cladding?